

ESH-EHA 12th Tutorial Diagnostic Work-Up of Hematological Malignancies Focus on Lymphoid Malignancies Type III Tutorial

New modalities for Hodgkin Disease

Presenter: Mustafa Çetin

Kayseri, Turkey September 25-27, 2009

Progressive and relapsed HD after first-line polychemotherapy

Overall Survival (Months)

A prognostic score in relapsed Hodgkin`s disease (n = 422)

Factor	G 4	roups with -year OS
Duration of 1. remission	Early relapse <i>vs</i> .	47%
	Late relapse	73%
Stage at relapse	Stage III/IV vs.	46%
	Stage I/II	77%
Hemoglobin	F < 10.5g/dl; M < 12.0g/ vs.	dl 40%
	F > 10.5g/dl; M > 12.0g/	dl 72%

THD - İstanbul 2009 -Josting et al, JCO 2002

OS: Relapse after chemotherapy

Prognostic score: early relapse, stage III/IV, anemia

Treatment of relapse after primary chemotherapy

Salvageradiotherapy

- Conventional chemotherapy
- HDCT und ASCT
- > Allo SCT

Salvage Radiotherapy Alone For Relapse After Chemotherapy

Author	n	5y FFP (%)	5y OS (%)	Prognostic factors for FFP
Josting, 2003	100	29	51	B symptoms stage at relapse
Wirth, 1997	53	26	57	B symptoms extranodal sites histology
Leigh, 1993	44	38	48	extranodal sites
Petzner, 1994	28	40	63	n.e.
Brada, 1992	10	38	60	n.e.

Conventional salvage chemotherapy

Regimen	n	RR (%) Overall	RR (%) Relapse	RR (%) Progress	TRM (%)
DHAP	102	88	92	65	0
ASHAP	57	70	85	51	2
ESHAP	22	73	73	0	5
ICE	65	88	n.e.	n.e.	2
Dexa-BEAM	55	60	70	52	4
Mini-BEAM	44	74	85	52	0
CEVD	32	58	100	53	0
MINE	100	73	93	49	3

BNLI-trial BEAM + ABMT *vs.* mini-BEAM

	n	TRM	EFS (3y)	p
BEAM+ABMT	20	5	53%	0.005
mini-BEAM	20	9	10%	0.025
			Linch, Lancet	'93

GHSG/EBMT: HD-R1-trial Study design

Freedom from Treatment Failure chemosensitive patients after late relapse

Dose-intensification strategies in relapsed lymphoma

Late intensification

Upfront HD-CT

Cologne high-dose sequential (HDSC) Study design

I. Induction: Two cycles DHAP + G-CSF PR or CR ____ HDSC

II. HDSC:

High-dose cyclophosphamide + G-CSF PBSC – apheresis High-dose methotrexate + vincristine High-dose etoposide + G-CSF BEAM + PBSCT + G-CSF

Cologne high-dose sequential Dose

Drug	Dose (mg/m ²)	
Cyclophosphamide	4000	
Methotrexate + Vincristine	8000 1.4	
Etoposide	2000	
BCNU Etoposide Ara-C Melphalan	300 1200 1600 140	

Cologne high-dose sequential OS: Hodgkin lymphoma (n = 102)

HDR-2: Study design GHSG, EORTC, EBMT, GEL/TAMO

HDR2 study for patients with relapsed HL PFS (final analysis 2-09)

HDR2 study for patients with relapsed HL OS (final analysis 2-09)

New reagents in early clinical trials in Hodgkin Lymphoma

- Anti-CD30 (MDX060)
- ⁹⁰Yttrium-Daclizumab (anti-CD25)
- HCD122 (anti-CD40, Novartis)
- SGN35 (Immunotoxin, Seattle Genetics)
- Bevacicumab (plus Gemcar, Roche)
- Lenalidomide (IMID, Celgene)
- LBH589 (H-Dac Inhibitor, Novartis)
- MGCD103 (H-Dac Inhibitor, Methylgene)

Results with allo SCT

Reference	n	TRM	Outcome
Gajewsky `96	100	56%	15% DFS (2y)
Milpied `96	45	48%	15% PFS (4y)
Anderson `93	53	53%	26% EFS (5y)
Jones `90	21	52%	12% EFS (5y)

Conventional vs RIC allo-SCT Transplant related mortality

THD - İstanbul 2009 -Sureda, JCO, 2008

Conventional vs RIC allo-SCT PFS and OS

THD - İstanbul 2009 -Sureda, JCO, 2008

Conclusions

- 8 x BEACOPPesc in advanced stages
- PET good NPV in pts after chemo (HD15)
- HDCT and ASCT for pts with relapse
- Development of new drugs ongoing
- Need better definition of individual risk profiles and reduction of long-term toxicity

Lymphoma Registry: SCT activity 2000-2007

European Group for Blood and Marrow Transplantation

Excellence in science

Lymphoma Registry: SCT activity 2000-2007

Activity by country

Lymphoma Registry: SCT activity 2000-2007

Lymphoma Registry: SCT activity 2000-2007

Excellence in scient

European Group for Blood and Marrow Transplantation

Lymphoma Registry: SCT activity 2000-2007

RIC compared with conventional allogeneic SCT in relapsed or refractory Hodgkin's lymphoma

- n=190 1st allo-SCT 1997-2001 / Previous failed ASCT46%
- Male sex 51%; median age 30 y (9-64)

	Conventional	RIC	n waluo
	93 (49%)	97 (51%)	p value
Period of SCT: 1997-1998 / 1999-2001	42%/58%	16% / 84%	< 0.001
Previous ASCT	44%	61%	0.03
Diagnosis – Allo-SCT (months)	31 (7 – 181)	40 (4 - 242)	0.01
Donor: HLA matched sib./MUD/Others	76% / 10% / 14%	78%/12%/9%	% n.s.
Stem cell source: BM /PB	40% / 60%	15%/85%	<0.001
Chemorefractory disease at SCT	54%	56%	n.s.
Median Follow–up (months)	50 (12 - 94)	54 (17 – 109)	n.s.

Sureda et al. J Clin Oncol. 2008; 26:455-62

RIC compared with conventional allogeneic SCT in relapsed or refractory Hodgkin's lymphoma

Estimate of the NRM and PFS based on a COX model, adjusted by all covariates with impact on the outcomes. RR and p values from multivariate Cox model.

Sureda et al. J Clin Oncol. 2008; 26:455-62

RIC Allo-SCT for Hodgkin's disease: Identification of prognostic factors predicting outcome

Robinson et al. J Clin Oncol (submitted)

RIC Allo-SCT for Hodgkin's disease: Identification of prognostic factors predicting outcome

PFS and OS for patients with chemosensitive disease and good performance status at SCT treated with a RIC SCT in the period 2002-2005 (n=104).

Robinson et al. J Clin Oncol (submitted)

Allogeneic Hematopoietic SCT in Children and Adolescents With Recurrent Hodgkin's Lymphoma

RIC regimens are associated with a lower NRM the first period after Allo-SCT (p=0.1), but are followed subsequently by an increased risk of progression, with a trend to a lower PFS.

Claviez et al. J (in preparation)

Analysis of risk factors for outcomes after UCB transplantation in adults with lymphoid malignancies

- n=104 Unrelated CBT 1996-June 2007
- NHL n=62 / HL n=29 / CLL n=13
- Neutrophil engraftment at day 60: 85%
- a GVHD at day 100: 24%

- NRM at 1 year: 28%
 Relapse or prog at 1 y: 31%
 PFS at 1 y: 41%
 - Overall survival at 1 y:

PFS

Arrais et al. (Submitted)

47%

THD - İstanbul 2009 -

Relapse or progression