SECTION 3: STABILITY

UZM 305 – Automatic Control

Control System Design Requirements

□ Consider the following 2nd-order systems

$$G_1(s) = \frac{15}{(s+3)(s+5)}$$
 and $G_2(s) = \frac{8}{s^2+4s+8}$

 \Box $G_1(s)$ has two real poles:

$$s_1 = -3$$
 and $s_2 = -5$

 \Box $G_2(s)$ has a complex-conjugate pair of poles:

$$s_{1,2} = -2 \pm j2$$

□ The step response of each system is:

$$y_1(t) = 1.5e^{-5t} - 2.5e^{-3t} + 1$$

$$y_2(t) = -e^{-2t} [\cos(2t) + \sin(2t)] + 1$$

- □ Both step responses are a superposition of:
 - *Natural response* (transient)
 - **Driven** or **forced response** (steady-state)

Natural Response

$$y_1(t) = 1.5e^{-5t} - 2.5e^{-3t}$$

$$y_2(t) = -e^{-2t}[\cos(2t) + \sin(2t)]$$

Driven Response

$$+1$$

□ In both cases, the natural response decays to zero as $t \to \infty$

□ Both step responses are characteristic of *stable* systems

□ Now, consider the following similar-looking systems:

$$G_3(s) = \frac{15}{(s-3)(s-5)}$$
 and $G_4(s) = \frac{8}{s^2 - 4s + 8}$

 \Box $G_3(s)$ has two real poles

$$s_1 = 3$$
 and $s_2 = 5$

 \Box $G_4(s)$ has a complex-conjugate pair of poles

$$s_{1,2} = 2 \pm j2$$

The step responses of these systems are:

$$y_3(t) = 1.5e^{5t} - 2.5e^{3t} + 1$$

$$y_4(t) = -e^{2t}[\cos(2t) + \sin(2t)] + 1$$

 Again, step responses consist of a natural response component and a driven component

Natural Response Driven Response
$$y_1(t) = 1.5e^{5t} - 2.5e^{3t} + 1$$
$$y_2(t) = -e^{2t}[\cos(2t) + \sin(2t)] + 1$$

- □ Now, as $t \to \infty$, the natural responses do not decay to zero
 - They blow up why?
 - Exponential terms are positive

□ Step responses characteristic of *unstable* systems

- Why are the exponential terms positive?
 - Determined by the system poles
- ☐ For the over-damped system, the poles are

$$s_1 = \sigma_1$$
 and $s_2 = \sigma_2$

And, the step response is

$$y(t) = r_1 e^{\sigma_1 t} + r_2 e^{\sigma_2 t} + r_3$$

For the under-damped system, the poles are

$$s_{1,2} = \sigma \pm j\omega_d$$

op The step response is

$$y(t) = r_1 e^{\sigma t} \cos(\omega_d t) + r_2 e^{\sigma t} \sin(\omega_d t) + r_3$$

Stability and System Poles

- \square Sign of the exponentials determined by σ , the **real part of the system poles**
- \Box If $\sigma < 0$
 - Pole is in the *left half-plane* (LHP)
 - Natural response $\rightarrow 0$ as $t \rightarrow \infty$
 - System is *stable*
- \Box If $\sigma > 0$
 - Pole is in the *right half-plane* (RHP)
 - Natural response $\rightarrow \infty$ as $t \rightarrow \infty$
 - System is *unstable*

Purely-Imaginary Poles

- LHP poles correspond to stable systems
- RHP poles correspond to unstable systems
- It seems that the imaginary axis is the boundary for stability
- □ What if poles are on the imaginary axis?
- Consider the following system

$$G_5(s) = \frac{4}{s^2 + 4}$$

Two purely-imaginary poles

$$s_{1,2} = \pm j2$$

Marginal Stability

Step response for this undamped system is

Natural Response

 $y_5(t) = -\cos(2t)$

Driven Response

+1

- Natural response neither decays to zero, nor grows without bound
 - Oscillates indefinitely
 - System is *marginally stable*

Marginal Stability

Step response is characteristic of a marginally-stable system

Repeated Imaginary Poles

- We'll look at one more interesting case before presenting a formal definition for stability
- Consider the following system

$$G_6(s) = \frac{16}{s^4 + 8s^2 + 16} = \frac{16}{(s^2 + 4)^2}$$

Repeated poles on the imaginary axis

$$s_{1,2} = \pm j2$$
 and $s_{3,4} = \pm j2$

□ The step response for this system is

Natural Response

$$y_6(t) = -\cos(2t) - t \cdot \sin(2t) + 1$$

Driven Response

$$+ 1$$

Repeated Imaginary Poles

$$y_6(t) = -\cos(2t) - t \cdot \sin(2t) + 1$$

- Multiplying time factor causes the natural response to grow without bound
 - An unstable system
 - Results from repeated poles
- Multiple identical poles on the imaginary axis implies an unstable system

Repeated Imaginary Poles

Step response shows that the system is unstable

Definitions of Stability

Definitions of Stability – Natural Response

- We know that system response is the sum of a natural response and a driven response
- Can define the categories of stability based on the natural response:
- □ Stable
 - A system is stable if its natural response $\rightarrow 0$ as $t \rightarrow \infty$
- □ <u>Unstable</u>
 - A system is unstable if its natural response $\rightarrow \infty$ as $t \rightarrow \infty$
- □ Marginally Stable
 - A system is marginally stable if its natural response neither decays nor grows, but remains constant or oscillates

BIBO Stability

- Alternatively, we can define stability based on the total response
- □ Bounded-input, bounded-output (BIBO) stability
- □ Stable
 - A system is stable if every bounded input yields a bounded output
- □ <u>Unstable</u>
 - A system is unstable if any bounded input yields an unbounded output

Closed-Loop Poles and Stability

□ Stable

A stable system has all of its closed-loop poles in the left-half plane

□ <u>Unstable</u>

■ An unstable system has at least one pole in the right half-plane and/or repeated poles on the imaginary axis

■ Marginally Stable

■ A marginally-stable system has non-repeated poles on the imaginary axis and (possibly) poles in the left halfplane

Stable system's closed-loop poles (not to scale)

(a)

Unstable system

Determining Stability

- Stability determined by pole locations
 - $lue{}$ Poles determined by the characteristic polynomial, $\Delta(s)$
- Factoring the characteristic polynomial will always tell us if a system is stable or not
 - Easily done with a computer or calculator
- If you have an unknown parameter in the denominator of a transfer function, it is difficult to determine via a calculator the range of this parameter to yield stability
 - \blacksquare Form of $\Delta(s)$ may indicate RHP poles directly, or
 - ■Routh-Hurwitz Criterion

Stability from $\Delta(s)$ Coefficients

A stable system has all poles in the LHP

$$T(s) = \frac{Num(s)}{(s+a_1)(s+a_2)\cdots(s+a_n)}$$

- Poles: $p_i = -a_i$
- For all LHP poles, $a_i > 0$, $\forall i$
- \blacksquare Result is that all coefficients of $\Delta(s)$ are **positive**
- □ If any coefficient of $\Delta(s)$ is **negative**, there is at least one RHP pole, and the system is **unstable**
- \square If any coefficient of $\Delta(s)$ is **zero**, the system is **unstable** or, at best, **marginally stable**
- □ If all coefficients of $\Delta(s)$ are **positive**, the system may be **stable** or may be **unstable**

Routh-Hurwitz Criterion

- □ Need a method to detect RHP poles if all coefficients of $\Delta(s)$ are positive:
 - Routh-Hurwitz criterion
- General procedure:
 - 1. Generate a *Routh table* using the characteristic polynomial of the closed-loop system
 - 2. Apply the *Routh-Hurwitz criterion* to interpret the table and determine the *number* (not locations) of RHP poles

Routh-Hurwitz – Utility

- Routh-Hurwitz was very useful for determining stability in the days before computers
 - Factoring polynomials by hand is difficult
- ☐ Still useful for *design*, e.g.:

- $\ \square$ Stable for some range of gain, K, but unstable beyond that range
- Routh-Hurwitz allows us to determine that range

Routh Table

Consider a 4th-order closed-loop transfer function:

$$T(s) = \frac{Num(s)}{a_4s^4 + a_3s^3 + a_2s^2 + a_1s + a_0}$$

- □ Routh table has one row for each power of s in $\Delta(s)$
 - First row contains coefficients of even powers of s (odd if the order of $\Delta(s)$ is odd)
 - Second row contains coefficients of odd (even) powers of s
 - Fill in zeros if needed if even order

s^4 s^3 s^2 s^1 s^0	a_4	a_2	a_0
s^3	a_3	a_1	0
s^2			
s^1			
s^0			

Routh Table

 Remaining table entries calculated using entries from two preceding rows as follows:

Routh Table – Example

Consider the following feedback system

The closed-loop transfer function is

$$T(s) = \frac{5000}{s^3 + 20s^2 + 124s + 5240}$$

The first two rows of the Routh table are

Note that we can simplify by scaling an entire row by any factor

Routh Table – Example

Calculate the remaining table entries:

$$s^{3} \qquad 1 \qquad 124$$

$$s^{2} \qquad 20 \ 1 \qquad 5240 \ 262$$

$$s^{1} \qquad -\frac{\begin{vmatrix} 1 & 124 \\ 1 & 262 \end{vmatrix}}{1} = -138 \qquad -\frac{\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}}{1} = 0$$

$$s^{0} \qquad -\frac{\begin{vmatrix} 1 & 262 \\ -138 & 0 \end{vmatrix}}{-138} = 262 \qquad -\frac{\begin{vmatrix} 1 & 0 \\ -138 & 0 \end{vmatrix}}{-138} = 0$$

- □ How do we interpret this table?
 - Routh-Hurwitz criterion

Routh-Hurwitz Criterion

□ Routh-Hurwitz Criterion

■ The number of poles in the RHP is equal to the number of sign changes in the first column of the Routh table

Apply this criterion to our example:

$$s^3$$
 1
 124

 s^2
 1
 262

 s^1
 -138
 0

 s^0
 262
 0

□ Two sign changes in the first column indicate two RHP poles → system is unstable

Routh-Hurwitz – Stability Requirements

 Consider the same system, where controller gain is left as a parameter

□ Closed-loop transfer function:

$$T(s) = \frac{100K}{s^3 + 20s^2 + 124s + 240 + 100K}$$

- Plant itself is stable
 - $lue{}$ Presumably there is some range of gain, K, for which the closed-loop system is also stable
 - Use *Routh-Hurwitz* to determine this range

Routh-Hurwitz – Stability Requirements

$$T(s) = \frac{100K}{s^3 + 20s^2 + 124s + 240 + 100K}$$

Create the Routh table

$$s^{3} = 1$$

$$s^{2} = 20 \cdot 1$$

$$124$$

$$s^{3} = -\frac{\begin{vmatrix} 1 & 124 \\ 1 & 12 + 5K \end{vmatrix}}{1} = 112 - 5K$$

$$-\frac{\begin{vmatrix} 1 & 0 \\ 1 & 0 \end{vmatrix}}{1} = 0$$

$$s^{0} = -\frac{\begin{vmatrix} 1 & 12 + 5K \\ 112 - 5K & 0 \end{vmatrix}}{112 - 5K} = 12 + 5K$$

$$-\frac{\begin{vmatrix} 1 & 0 \\ 1 & 12 - 5K & 0 \end{vmatrix}}{112 - 5K} = 0$$

Routh-Hurwitz – Stability Requirements

$$s^3$$
 1
 124

 s^2
 1
 12 + 5K

 s^1
 112 - 5K
 0

 s^0
 12 + 5K
 0

- □ *Stable* for

$$112 - 5K > 0$$

 $K < 22.4$

Unstable (two RHP poles) for

$$112 - 5K < 0$$

 $K > 22.4$

Routh Table – Special Cases

- Two special cases can arise when creating a Routh table:
 - 1. A zero in only the first column of a row
 - Divide-by-zero problem when forming the next row
 - 2. An entire row of zeros
 - Indicates the presence of pairs of poles that are mirrored about the imaginary axis
- We'll next look at methods for dealing with each of these scenarios

Routh Table – Zero in the First Column

- If a zero appears in the first column
 - 1. Replace the zero with $\pm\epsilon$
 - 2. Complete the Routh table as usual
 - 3. $\epsilon \to 0$, from either the positive or the negative side
 - 4. Evaluate the sign of the first-column entries
- For example:

$$T(s) = \frac{10}{s^5 + 2s^4 + 3s^3 + 6s^2 + 5s + 3}$$

First two rows in the Routh table:

First-Column Zero – Example

 \square Replace the first-column zero with ϵ and proceed as usual

$$\begin{vmatrix} s^2 \\ -\frac{\begin{vmatrix} 1 & 6 \\ \epsilon & 7 \end{vmatrix}}{\epsilon} = \frac{6\epsilon - 7}{\epsilon} & -\frac{\begin{vmatrix} 2 & 3 \\ \epsilon & 0 \end{vmatrix}}{\epsilon} = 3 & -\frac{\begin{vmatrix} 2 & 0 \\ \epsilon & 0 \end{vmatrix}}{\epsilon} = 0 \\ -\frac{\begin{vmatrix} \frac{6\epsilon - 7}{\epsilon} & 3 \\ \frac{6\epsilon - 7}{\epsilon} & 3 \end{vmatrix}}{12\epsilon - 14} = \frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14} & -\frac{\begin{vmatrix} \frac{\epsilon}{6\epsilon} - 7 & 0 \\ \frac{6\epsilon - 7}{\epsilon} & 0 \end{vmatrix}}{\frac{6\epsilon}{\epsilon} - \frac{7}{\epsilon}} = 0 & -\frac{\begin{vmatrix} \frac{\epsilon}{6\epsilon} - 7 & 0 \\ \frac{6\epsilon - 7}{\epsilon} & 0 \end{vmatrix}}{\frac{6\epsilon}{\epsilon} - \frac{7}{\epsilon}} = 0$$

Continuing on the next page ...

First-Column Zero – Example

 \square Next, take the $\epsilon \to 0$

First-Column Zero – Example

 \Box Approach $\epsilon \rightarrow 0$ and looking at the first column:

Label	First column	$\epsilon = +$	$\epsilon = -$
s ⁵	1	+	+
s^4	2	+	+
s^3	$\Theta \epsilon$	+	_
s^2	$\frac{6\epsilon-7}{\epsilon}$	_	+
s^1	$\frac{42\epsilon - 49 - 6\epsilon^2}{12\epsilon - 14}$	+	+
s^0	3	+	+

- □ Two sign changes
 - Two RHP poles
 - System is *unstable*

Routh Table – Row of Zeros

A whole row of zeros indicates the presence of pairs of poles that are mirrored about the imaginary axis:

- At best, the system is marginally stable
- Use a Routh table to determine if it is unstable

Routh Table – Row of Zeros

- □ If an entire row of zeros appears in a Routh table
 - 1. Create an *auxiliary polynomial* from the row above the row of zeros, skipping every other power of *s*
 - 2. Differentiate the auxiliary polynomial w.r.t. s
 - 3. Replace the zero row with the coefficients of the resulting polynomial
 - 4. Complete the Routh table as usual
 - 5. Evaluate the sign of the first-column entries

Row of Zeros – Example

Consider the following system

$$T(s) = \frac{1}{s^5 + 5s^4 + 11s^3 + 23s^2 + 28s + 12}$$

□ The first few rows of the Routh table:

Continuing on the next page ...

Row of Zeros – Example

- A row of zeros has appeared
 - lacktriangle Create an auxiliary polynomial from the s^2 row

$$P(s) = s^2 + 4$$

Differentiate

$$\frac{dP}{ds} = 2s$$

 \blacksquare Replace the s^1 row with the dP/ds coefficients

Row of Zeros – Example

$$\frac{dP}{ds} = 2s$$

 \Box Replacing the s^1 row with the coefficients of dP/ds

s^5	1	11	28
s^5 s^4 s^3 s^2 s^1	5	23	12
s^3	1	4	0
s^2	1	4	0
s^1	0 2	0	0
s^0	$-\frac{\begin{vmatrix} 1 & 4 \\ 2 & 0 \end{vmatrix}}{2} = 4$	$-\frac{\begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix}}{2} = 0$	$-\frac{\begin{vmatrix} 1 & 0 \\ 2 & 0 \end{vmatrix}}{2} = 0$

- □ No sign changes, so RHP poles, but
 - Row of zeros indicates that system is *marginally stable*

Stability Evaluation – Summary

- \Box If coefficients of $\Delta(s)$ have different signs
 - System is unstable
- \square If some coefficients of $\Delta(s)$ are zero
 - System is, at best, marginally stable
- \Box If all $\Delta(s)$ coefficients have the same sign
 - ■System may be stable or unstable
 - ■Generate a Routh table and apply Routh-Hurwitz criterion
 - Replace any zero first-column entries with and let take the limit as $\epsilon \to 0$
 - Replace a row of zeros with coefficients from the derivative of the auxiliary polynomial
 - If no RHP poles are detected, the system is marginally stable
 - ■System is stable if all of the poles are only in the left half-plane