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Physical constants in SI units 

Physical constant Value in SI units 

 

Absolute zero temperature 

Acceleration due to gravity, g 

Avogadro’s number, NA 

Base of natural logarithms, e 

Boltzmann’s constant, k 

Faraday’s constant k 

Gas constant, R  

Permeability of vacuum, 0 

Permittivity of vacuum, ε0 

Planck’s constant, h 

Velocity of light in vacuum, c 

Volume of perfect gas at STP 

 

-273.2  oC 

9.807  m/s2 

6.022 x 1023 - 

2.718  - 

1.381 x 10-23  J/K 

9.648 x 104  C/mol 

8.314   J/mol/K 

1.257 x 10-6  H/m 

8.854 x 10-12  F/m 

6.626 x 10-34  J/s 

2.998 x 108  m/s 

22.41 x 10-3  m3/mol 

 

 
 

 

Conversion of units, general 

Quantity Imperial unit SI unit 

Angle, θ 1 rad 57.30o 

Density, ρ 1 lb/ft3 16.03 kg/m3 

Diffusion coefficient, D 1cm2/s 1.0 x 10-4m2/s 

Energy, U See inside back cover  

Force, F 1 kgf 

1 lbf 

1 dyne 

9.807 N 

4.448 N 

1.0 x 10-5N 

Length,   1 ft 

1 inch 

1 Å  

304.8 mm 

25.40 mm 

0.1 nm 

Mass, M 1 tonne 

1 short ton 

1 long ton 

1 lb mass 

1000 kg 

908 kg 

1107 kg 

0.454 kg 

Power, P See inside back cover  

Stress, σ See inside back cover  

Specific heat, Cp 1 cal/gal.oC 

Btu/lb.oF 

4.188 kJ/kg.oC 

4.187 kg/kg.oC 

Stress intensity, K1c 1 ksi in 1.10 MN/m3/2 

Surface energy  1 erg/cm2 1 mJ/m2 

Temperature, T 1oF 0.556oK 

Thermal conductivity λ 1 cal/s.cm.oC 

1 Btu/h.ft.oF 

418.8 W/m.oC 

1.731 W/m.oC 

Volume, V 1 Imperial gall 

1 US gall 

4.546 x 10-3m3 

3.785 x 10-3m3 

Viscosity,  1 poise 

1 lb ft.s 

0.1 N.s/m2 

0.1517 N.s/m2 
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Useful solutions for standard problems 

 
Preface 

 Modelling is a key part of design.  In the early stage, approximate modelling establishes whether 

the concept will work at all, and identifies the combination of material properties that maximize 

performance.  At the embodiment stage, more accurate modelling brackets values for the forces, the 

displacements, the velocities, the heat fluxes and the dimensions of the components.  And in the final 

stage, modelling gives precise values for stresses, strains and failure probability in key components; 

power, speed, efficiency and so forth. 

 Many components with simple geometries and loads have been modelled already.  Many more-

complex components can be modelled approximately by idealising them as one of these.  There is no 

need to reinvent the beam or the column or the pressure vessel; their behaviour under all common 

types of loading has already been analysed.  The important thing is to know that the results exist and 

where to find them. 

 This Booklet summarises the results of modelling a number of standard problems.  Their 

usefulness cannot be overstated.  Many problems of conceptual design can be treated, with adequate 

precision, by patching together the solutions given here; and even the detailed analysis of non-critical 

components can often be tackled in the same way.  Even when this approximate approach is not 

sufficiently accurate, the insight it gives is valuable. 

 This Booklet contains 16 double page sections that list, with a short commentary, results for 

constitutive equations; for the loading of beams, columns and torsion bars; for contact stresses, 

cracks and other stress concentrations; for pressure vessels, vibrating beams and plates; and for the 

flow of heat and matter.  They are drawn from numerous sources, listed under "Further reading" in 

Section 17. 

 

Mike Ashby 
Cambridge University Engineering Department 

and Granta Design, Cambridge, UK 
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1. Constitutive equations for mechanical response 

 The behaviour of a component when it is loaded depends on the mechanism by which it 

deforms.  A beam loaded in bending may deflect elastically; it may yield plastically; it may deform by 

creep; and it may fracture in a brittle or in a ductile way.  The equation that describes the material 

response is known as a constitutive equation.  Each mechanism is characterised by a different 

constitutive equation.  The constitutive equation contains one or more than one material property: 

Young's modulus,  E, and Poisson's ratio, ν,  are the material properties that enter the constitutive 

equation for linear-elastic deformation; the yield strength,  σy , is the material property that enters the 

constitutive equation for plastic flow; creep constants, o  ,  σo  and  n enter the equation for creep; 

the fracture toughness,  c1K , enters that for brittle fracture. 

 The common constitutive equations for mechanical deformation are listed on the facing page.  In 

each case the equation for uniaxial loading by a tensile stress σ is given first; below it is the equation 

for multiaxial loading by principal stresses  σ1,  σ2  and σ3, always chosen so that  σ1 is the most 

tensile and  σ3  the most compressive (or least tensile) stress.  They are the basic equations that 

determine mechanical response. 
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2. Moments of sections 

 A beam of uniform section, loaded in simple tension by a force  F, carries a stress  

    A/F    

where  A  is the area of the section.  Its response is calculated from the appropriate constitutive 

equation.  Here the important characteristic of the section is its area,  A.  For other modes of loading, 

higher moments of the area are involved.  Those for various common sections are given on the facing 

page.  They are defined as follows. 

 The second moment  I  measures the resistance of the section to bending about a horizontal axis 

(shown as a broken line).  It is 

     section
2 dy b(y) yI  

where y is measured vertically and  b(y)  is the width of the section at  y.  The moment  K  measures 

the resistance of the section to twisting.  It is equal to the polar moment  J  for circular sections, where 

     section
3 drr2J   

where  r  is measured radially from the centre of the circular section.  For non-circular sections  K  is 

less than  J.   

 The section modulus  Z = I/ym  (where ym is the normal distance from the neutral axis of 

bending to the outer surface of the beam) measures the surface stress generated by a given bending 

moment,  M: 

    Z

M

I

yM m   

Finally, the moment Zp, defined by 

    
 sectionp dy b(y)y Z  

measures the resistance of the beam to fully-plastic bending.  The fully plastic moment for a beam in 

bending is 

    ypp ZM   
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3. Elastic bending of beams 

 When a beam is loaded by a force  F  or moments  M, the initially straight axis is deformed into a 

curve.  If the beam is uniform in section and properties, long in relation to its depth and nowhere 

stressed beyond the elastic limit, the deflection  δ,  and the angle of rotation, θ, can be calculated 

using elastic beam theory (see Further reading in Section 16).  The basic differential equation 

describing the curvature of the beam at a point  x  along its length is 

    M
dx

yd
IE

2

2

  

where  y  is the lateral deflection, and  M  is the bending moment at the point  x  on the beam.  E  is 

Young's modulus and  I  is the second moment of area (Section 2).  When M is constant this 

becomes 

    














oR

1

R

1
E

I

M
 

where  Ro  is the radius of curvature before applying the moment and  R  the radius after it is applied.  

Deflections  δ  and rotations  θ  are found by integrating these equations along the beam. The 

stiffness of the beam is defined by 

    
3

1

L

IECF
S 


 

It depends on Young's modulus,  E, for the material of the beam, on its length, L, and on the second 

moment of its section,  I.  The end-slope of the beam,  θ, is given by 

    
IEC

LF

2

2

   

Equations for the deflection, δ, and end slope,  θ, of beams, for various common modes of loading 

are shown on the facing page together with values of  1C   and  2C . 
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4. Failure of beams and panels 

 The longitudinal (or "fiber") stress  σ  at a point  y  from the neutral axis of a uniform beam 

loaded elastically in bending by a moment  M  is 

    














oR

1

R

1
E

I

M

y


 

where  I  is the second moment of area (Section 2), E  is Young's modulus,  Ro  is the radius of 

curvature before applying the moment and  R  is the radius after it is applied.  The tensile stress in the 

outer fiber of such a beam is 

    
Z

M

I

yM m   

where  ym  is the perpendicular distance from the neutral axis to the outer surface of the beam.  If this 

stress reaches the yield strength  σy  of the material of the beam, small zones of plasticity appear at 

the surface (top diagram, facing page).  The beam is no longer elastic, and, in this sense, has failed.  

If, instead, the maximum fiber stress reaches the brittle fracture strength, σf  (the "modulus of 

rupture", often shortened to MOR) of the material of the beam, a crack nucleates at the surface and 

propagates inwards (second diagram); in this case, the beam has certainly failed.  A third criterion for 

failure is often important: that the plastic zones penetrate through the section of the beam, linking to 

form a plastic hinge (third diagram). 

 The failure moments and failure loads, for each of these three types of failure, and for each of 

several geometries of loading, are given on the diagram.  The formulae labelled "onset" refer to the 

first two failure modes; those labelled "full plasticity" refer to the third.  Two new functions of section 

shape are involved.  Onset of failure involves the quantity Z; full plasticity involves the quantity  H.  

Both are listed in the table of Section 2, and defined in the text that accompanies it. 
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5. Buckling of columns, plates and shells 

 If sufficiently slender, an elastic column, loaded in compression, fails by elastic buckling at a 

critical load,  Fcrit.  This load is determined by the end constraints, of which four extreme cases are 

illustrated on the facing page: an end may be constrained in a position and direction; it may be free to 

rotate but not translate (or "sway"); it may sway without rotation; and it may both sway and rotate.  

Pairs of these constraints applied to the ends of column lead to the five cases shown opposite.  Each 

is characterised by a value of the constant  n  that is equal to the number of half-wavelengths of the 

buckled shape. 

 The addition of the bending moment  M  reduces the buckling load by the amount shown in the 

second box.  A negative value of  Fcrit  means that a tensile force is necessary to prevent buckling. 

 An elastic foundation is one that exerts a lateral restoring pressure,  p, proportional to the 

deflection  

    ykp   

where  k  is the foundation stiffness per unit depth and  y  the local lateral deflection.  Its effect is to 

increase  Fcrit, by the amount shown in the third box. 

 A thin-walled elastic tube will buckle inwards under an external pressure  p', given in the last box.  

Here  I  refers to the second moment of area of a section of the tube wall cut parallel to the tube axis.  

 Thin or slender shapes may buckle locally before they yield or fracture.  It is this that sets a 

practical limit to the thinness of tube walls and webs (Chapter 9). 
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6. Torsion of shafts 

 A torque,  T, applied to the ends of an isotropic bar of uniform section, and acting in the plane 

normal to the axis of the bar, produces an angle of twist  θ.  The twist is related to the torque by the 

first equation on the facing page, in which  G  is the shear modulus.  For round bars and tubes of 

circular section, the factor  K  is equal to  J, the polar moment of inertia of the section, defined in 

Section 2.  For any other section shape  K  is less than  J.  Values of  K are given in Section 2. 

 If the bar ceases to deform elastically, it is said to have failed.  This will happen if the maximum 

surface stress exceeds either the yield strength y  of the material or the stress at which it fractures 

fr .  For circular sections, the shear stress at any point a distance  r  from the axis of rotation is 

    
K

rG

K

rT 
   

The maximum shear stress,  τmax , and the maximum tensile stress, σmax, are at the surface and 

have the values 

    
L2

dG

K2

dT oo
maxmax


   

If  τmax  exceeds  σy/2 (using a Tresca yield criterion), or if  σmax exceeds fr , the bar fails, as 

shown on the figure.  The maximum surface stress for the solid ellipsoidal, square, rectangular and 

triangular sections is at the points on the surface closest to the centroid of the section (the mid-points 

of the longer sides).  It can be estimated approximately by inscribing the largest circle that can be 

contained within the section and calculating the surface stress for a circular bar of that diameter.  

More complex section-shapes require special consideration, and, if thin, may additionally fail by 

buckling.   

 Helical springs are a special case of torsional deformation.  The extension of a helical spring of  

n  turns of radius  R, under a force  F, and the failure force  Fcrit, are given on the facing page. 
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7. Static and spinning disks 

 A thin disk deflects when a pressure difference p  is applied across its two surfaces.  The 

deflection causes stresses to appear in the disk.  The first box on the facing page gives deflection and 

maximum stress (important in predicting failure) when the edges of the disk are simply supported.  

The second gives the same quantities when the edges are clamped.  The results for a thin horizontal 

disk deflecting under its own weight are found by replacing  p   by the mass-per-unit-area,  tg , of 

the disk (here  ρ  is the density of the material of the disk and  g  is the acceleration due to gravity).  

Thick disks are more complicated; for those, see "Further reading". 

 Spinning disks, rings and cylinders store kinetic energy.  Centrifugal forces generate stresses in 

the disk.  The two boxes list the kinetic energy and the maximum stress  max   in disks and rings 

rotating at an angular velocity  ω  (radians/sec).  The maximum rotation rate and energy are limited 

by the burst-strength of the disk.  They are found by equating the maximum stress in the disk to the 

strength of the material.   



 
 

19  © Mike Ashby 2016 

 

  



 
 

20  © Mike Ashby 2016 

 

8. Contact stresses 

 When surfaces are placed in contact they touch at  one or a few discrete points.  If the surfaces 

are loaded, the contacts flatten elastically and the contact areas grow until failure of some sort 

occurs: failure by crushing (caused by the compressive stress,  σc), tensile fracture (caused by the 

tensile stress,  σt) or yielding (caused by the shear stress  σs).  The boxes on the facing page 

summarise the important results for the radius,  a, of the contact zone, the centre-to-centre 

displacement  u and the peak values of  σc , σt  and  σs. 

 The first box shows results for a sphere on a flat, when both have the same moduli and 

Poisson's ratio has the value 1/3.  Results for the more general problem (the "Hertzian indentation" 

problem) are shown in the second box: two elastic spheres (radii  R1  and  R2, moduli and Poisson's 

ratios  E1, ν1  and  E2,  ν2) are pressed together by a force  F. 

 If the shear stress  σs  exceeds the shear yield strength σy /2, a plastic zone appears beneath 

the centre of the contact at a depth of about  a/2  and spreads to form the fully-plastic field shown in 

the two lower figures.  When this state is reached, the contact pressure is approximately  3  times the 

yield stress, as shown in the bottom box. 
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9. Estimates for stress concentrations 

 Stresses and strains are concentrated at holes, slots or changes of section in elastic bodies.  

Plastic flow, fracture and fatigue cracking start at these places.  The local stresses at the stress 

concentrations can be computed numerically, but this is often unnecessary.  Instead, they can be 

estimated using the equation shown on the facing page. 

 The stress concentration caused by a change in section dies away at distances of the order of 

the characteristic dimension of the section-change (defined more fully below), an example of St 

Venant's principle at work.  This means that the maximum local stresses in a structure can be found 

by determining the nominal stress distribution, neglecting local discontinuities (such as holes or 

grooves), and then multiplying the nominal stress by a stress concentration factor.  Elastic stress 

concentration factors are given approximately by the equation.  In it,  σnom  is defined as the load 

divided by the minimum cross-section of the part,   is the minimum radius of curvature of the stress-

concentrating groove or hole, and  c  is the characteristic dimension: either the half-thickness of the 

remaining ligament, the half-length of a contained crack, the length of an edge-crack or the height of 

a shoulder, whichever is least.  The drawings show examples of each such situation.  The factor  α  is 

roughly  2 for tension, but is nearer 1/2 for torsion and bending.  Though inexact, the equation is an 

adequate working approximation for many design problems. 

 The maximum stress is limited by plastic flow or fracture.  When plastic flow starts, the strain 

concentration grows rapidly while the stress concentration remains constant.  The strain 

concentration becomes the more important quantity, and may not die out rapidly with distance (St 

Venant's principle no longer applies). 
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10. Sharp cracks 

 Sharp cracks (that is, stress concentrations with a tip radius of curvature of atomic dimensions) 

concentrate stress in an elastic body more acutely than rounded stress concentrations do.  To a first 

approximation, the local stress falls off as  1/r1/2   with radial distance  r  from the crack tip.  A tensile 

stress  σ,  applied normal to the plane of a crack of length  2a  contained in an infinite plate (as in the 

top figure on the facing page) gives rise to a local stress field   that is tensile in the plane 

containing the crack and given by  

     
r2

C






a
   

where  r  is measured from the crack tip in the plane  θ = 0 and  C  is a constant.  The mode 1 stress 

intensity factor  KI, is defined as 

     aCK1   

Values of the constant  C  for various modes of loading are given on the figure.  The stress  σ  for 

point loads and moments is given by the equations at the bottom.  The crack propagates when 

c11 KK  , the fracture toughness.   

 When the crack length is very small compared with all specimen dimensions and compared with 

the distance over which the applied stress varies, C  is equal to  1  for a contained crack and  1.1  for 

an edge crack.  As the crack extends in a uniformly loaded component, it interacts with the free 

surfaces, giving the correction factors shown opposite.  If, in addition, the stress field is non-uniform 

(as it is in an elastically bent beam),  C differs from 1; two examples are given on the figure.  The 

factors,  C, given here, are approximate only, good when the crack is short but not when the crack 

tips are very close to the boundaries of the sample.  They are adequate for most design calculations.  

More accurate approximations, and other less common loading geometries can be found in the 

references listed in "Further reading".   
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11. Pressure vessels 

 Thin-walled pressure vessels are treated as membranes.  The approximation is reasonable 

when  t < b/4.  The stresses in the wall are given on the facing page; they do not vary significantly 

with radial distance,  r.  Those in the plane tangent to the skin,  σθ  and  σz  for the cylinder and  σθ  

and σϕ for the sphere, are just equal to the internal pressure amplified by the ratio  b/t or  b/2t, 

depending on geometry.  The radial stress σr  is equal to the mean of the internal and external stress,  

p/2  in this case.  The equations describe the stresses when an external pressure  pe  is 

superimposed if  p  is replaced by  (p - pe). 

 In thick-walled vessels, the stresses vary with radial distance  r  from the inner to the outer 

surfaces, and are greatest at the inner surface.  The equations can be adapted for the case of both 

internal and external pressures by noting that when the internal and external pressures are equal, the 

state of stress in the wall is 

     σθ  =  σr  =  -p   (cylinder) 

or    σθ   =    σϕ  =   σr   =  -p   (sphere) 

allowing the term involving the external pressure to be evaluated.  It is not valid to just replace  p  by  

(p - pe.) 

 Pressure vessels fail by yielding when the Von Mises equivalent stress first exceed the yield 

strength,  σy.  They fail by fracture if the largest tensile stress exceeds the fracture stress fr , where 

    
a

KC c1
fr


     

and  c1K  is the fracture toughness,  a  the half-crack length and  C  a constant given in Section 10. 
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12. Vibrating beams, tubes and disks 

 Any undamped system vibrating at one of its natural frequencies can be reduced to the simple 

problem of a mass  m  attached to a spring of stiffness  K.  The lowest natural frequency of such a 

system is 

    
m

K

2

1
f


   

Specific cases require specific values for  m  and  K.  They can often be estimated with sufficient 

accuracy to be useful in approximate modelling.  Higher natural frequencies are simple multiples of 

the lowest. 

 The first box on the facing page gives the lowest natural frequencies of the flexural modes of 

uniform beams with various end-constraints.  As an example, the first can be estimated by assuming 

that the effective mass of the beam is one quarter of its real mass, so that 

    
4

Lm
m o   

where  mo is the mass per unit length of the beam and that  K  is the bending stiffness (given by  F/δ  

from Section 3); the estimate differs from the exact value by 2%.  Vibrations of a tube have a similar 

form, using I  and  mo  for the tube.  Circumferential vibrations can be found approximately by 

"unwrapping" the tube and treating it as a vibrating plate, simply supported at two of its four edges. 

 The second box gives the lowest natural frequencies for flat circular disks with simply-supported 

and clamped edges.  Disks with doubly-curved faces are stiffer and have higher natural frequencies. 
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13. Creep and creep fracture 

 At temperatures above  1/3 Tm (where  Tm  is the absolute melting point), materials creep when 

loaded.  It is convenient to characterise the creep of a material by its behaviour under a tensile stress  

σ, at a temperature  Tm .  Under these conditions the steady-state tensile strain rate ss  is often 

found to vary as a power of the stress and exponentially with temperature: 

     
RT

Q
exp

n

Ass 













o
=




  

where  Q  is an activation energy,  A  is a kinetic constant and  R  is the gas constant.  At constant 

temperature this becomes 

      n
oss

o
 =




   

where o  (s-1) , o (N/m2) and  n  are creep constants. 

 The behaviour of creeping components is summarised on the facing page that give the deflection 

rate of a beam, the displacement rate of an indenter and the change in relative density of cylindrical 

and spherical pressure vessels in terms of the tensile creep constants. 

 Prolonged creep causes the accumulation of creep damage that ultimately leads, after a time ft

, to fracture.  To a useful approximation 

     Ct ssf  =  

where  C  is a constant characteristic of the material.  Creep-ductile material have values of  C  

between 0.1 and 0.5; creep-brittle materials have values of  C  as low as 0.01. 
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14. Flow of heat and matter 

 Heat flow can be limited by conduction, by convection or by radiation.  The constitutive equations 

for each are listed on the facing page.  The first equation is Fourier's first law, describing steady-state 

heat flow; it contains the thermal conductivity,  λ.  The second is Fourier's second law, which treats 

transient heat-flow problems; it contains the thermal diffusivity,  a, defined by 

    
C

a



  

where   is the density and  C  the specific heat at constant pressure.  Solutions to these two 

differential equations are given in Section 15. 

 The third equation describes convective heat transfer.  It, rather than conduction, limits heat flow 

when the Biot number 

    


sh
Bi 

  
 <  1  

where  h  is the heat-transfer coefficient and  s  is a characteristic dimension of the sample.  When, 

instead,  Bi  >  l, heat flow is limited by conduction.  The final equation is the Stefan-Boltzmann law for 

radiative heat transfer.  The emissivity,  ε, is unity for black bodies; less for all other surfaces. 

 Diffusion of matter follows a pair of differential equations with the same form as Fourier's two 

laws, and with similar solutions.  They are commonly written 

    
dx

dC
DCDJ      (steady state) 

and 

    
2

2
2

x

C
DCD

t

C









    (time-dependent flow) 

where  J  is the flux,  C  is the concentration,  x  is the distance and  t  is time.  Solutions are given in 

Section 15. 
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15. Solutions for diffusion equations 

 Solutions exist for the diffusion equations for a number of standard geometries.  They are worth 

knowing because many real problems can be approximated by one of these. 

 At steady-state the temperature or concentration profile does not change with time.  This is 

expressed by the boxed equations within the first box at the top of the facing page.  Solutions for 

these are given below for uniaxial flow, radial flow in a cylinder and radial flow in a sphere.  The 

solutions are fitted to individual cases by matching the constants  A  and  B  to the boundary 

conditions.  Solutions for matter flow are found by replacing temperature,  T,  by concentration,  C,  

and conductivity,  λ,  by diffusion coefficient,  D. 

 The box within the second large box summarises the governing equations for time-dependent 

flow, assuming that the diffusivity (a or D) is not a function of position.  Solutions for the temperature 

or concentration profiles, T(x,t)  or  C(x,t), are given below.  The first equation gives the "thin-film" 

solution: a thin slab at temperature  T1, or concentration C1 is sandwiched between two semi-infinite 

blocks at  To or  Co, at  t = 0, and flow allowed.  The second result is for two semi-infinite blocks, 

initially at  T1  and  To, (or  C1  or  Co)  brought together at   t = 0.  The last is for a  T  or  C  profile 

that is sinusoidal, of wavelength  2/ and amplitude  A  at   t = 0. 

 Note that all transient problems end up with a characteristic time constant  *t   with 

    
D

x
or

a

x
t

22
*


  

where  x  is a dimension of the specimen; or a characteristic length  *x   with 

    tDortax*   

where  t  is the time scale of observation, with  1 <   < 4, depending on geometry. 
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16. Thermal field for moving heat source 

 When a plate is exposed to a heat source q  moving at velocityv , a thermal field is created.  

The field tracks along with the moving heat source such the temperature T   at a distance  r  from 

the path of the source first rises, then decays back to ambient temperature oT . In welding, the 

peak temperature pT  reached in the cycle exceeds the melting point; in brazing and soldering it 

only reaches the melting point of the braze or solder. 

  Three characteristics of the thermal field are useful: the temperature T  as a function of 

position r  and time t ; the peak temperature pT  reached at the point r during the thermal cycle; 

and (for steels) the time interval t  to cool from 800 to 500 C because this determines the 

structure of the weld at that point.  For a thin plate (one with a thickness  d  that is small 

compared to the width of the thermal field) these quantities are given by  

  














ta4

r
exp

tC4d

v/q
TT

2

2/1
p

o


;    
rCd2

v/q

e

2
TT

p

2/1

op
 













  

and    
 

p
6

2

C10x6.4

vd/q
t


   

For a thick plate (one with a thickness that is large compared to the width of the thermal field) the 

corresponding equations are 
















ta4

r
exp

t2

v/q
TT

2

o


; 
2

p
op

rC

v/q

e

2
TT

 












  

and    
 




310x2.1

v/q
t   

Symbols are defined on the facing page. 
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17. Further reading 

Constitutive laws 
Cottrell, A.H. (1964) "Mechanical Properties of Matter", Wiley, NY, USA.  
Gere, J.M. and Timoshenko, S.P. (1985) "Mechanics of Materials", 2nd SI Edition, Wadsworth 
International, California USA. 
Moments of area 

Young, W.C. (1989)  "Roark's Formulas for Stress and Strain", 6th Edition, McGraw-Hill, New York, 
USA. 

Beams, shafts, columns and shells 

Calladine, C.R. (1983) "Theroy of Shell Structures", Cambridge University Press, Cambridge UK. 
Gere, J.M. and Timoshenko, S.P. (1985) "Mechanics of Materials", 2nd Edition, Wadsworth 
International, California USA. 
Timoshenko, S.P. and Goodier, J.N.  (1970)  "Theory of Elasticity", 3rd Edition, McGraw Hill, New 
York, USA. 
Timoshenko, S.P. and Gere, J.M. (1961)  "Theory of Elastic Stability", 2nd Edition, McGraw Hill New 
York, USA. 
Young, W.C. (1989)  "Roark's Formulas for Stress and Strain", 6th Edition, McGraw-Hill, New York, 
USA. 

Contact stresses and stress concentration 

Timoshenko, S.P. and Goodier, J.N.  (1970)  "Theory of Elasticity", 3rd Edition, McGraw Hill, New 
York, USA. 
Hill, R. (1950) "Plasticity", Oxford University Press, Oxford, UK 
Johnson, K.L. (1985) "Contact Mechanics", Oxford University Press, Oxford, UK. 

Sharp cracks 

Hertzberg, R.W. (1989) "Deformation and Fracture of Engineering Materials", 3rd edition, Wiley, New 
York, USA. 
Tada, H., Paris, P.C. and Irwin, G.R. "The Stress Analysis of Cracks Handbook", 2nd Edition, Paris 
Productions and Del Research Group, Missouri, U.S.A. 

Pressure vessels 

Timoshenko, S.P. and Goodier, J.N. (1970) Theory of Elasticity", 3rd Edition, McGraw Hill, New York, 
USA. 
Hill, R.  "Plasticity", Oxford University Press, Oxford (1950). 
Young, W.C. (1989)  "Roark's Formulas for Stress and Strain", 6th Edition, McGraw-Hill, New York, 
USA. 

Vibration 

Young, W.C. (1989)  "Roark's Formulas for Stress and Strain", 6th Edition, McGraw-Hill, New York, 
USA. 

Creep 

Finnie, I. and Heller, W.R. (1976)  "Creep of Engineering Materials", McGraw Hill, New York, U.S.A. 

Heat and matter flow 

Hollman, J.P.  (1981) "Heat Transfer", 5th Edition, McGraw Hill, New York, U.S.A.  

Carslaw, H.S. and Jaeger, J.C. (1959)  "Conduction of Heat in Solids", 2nd Edition, Oxford University 
Press, Oxford, UK. 

Shewmon, P.G. (1989) "Diffusion in Solids", 2nd Edition, TMS Warrendale, Pa, U.S.A. 

Moving heat source 

Rosenthal, D. (1946) Trans. Am. Soc. Metals Vol. 68, 849;   

Ashby M.F. and Easterling, K.E.(1982) Acta Metall. Vol 30, 1969.
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Conversion of units – stress and pressure 

                   To → MPa dyn/cm2 lb/in2 kgf/mm2 bar long ton/in2 

From ↓   Multiply by    

MPa 1 107 1.45 x 102 0.102 10 6.48 x 10-2 

dyn/cm2 10-7 1 1.45 x 10-5 1.02 x 10-8 10-6 6.48 x 10-9 

lb/in2 6.89 x 10-3 6.89 x 104 1 7.03 x 10-4 6.89 x 10-2 4.46 x 10-4 

kgf/mm2 9.81 9.81 x 107 1.42 x 103 1 98.1 63.5 x 10-2 

bar 0.10 106 14.48 1.02 x 10-2 1 6.48 x 10-3 

long ton/ in2 15.44 1.54 x 108 2.24 x 103 1.54 1.54 x 102 1 

 

 

 
Conversion of units – energy* 

             To → MJ kWhr kcal Btu ft lbf toe 

From ↓   Multiply by    

MJ 1 0.278 239 948 0.738 x 106 23.8 x 10-6 

kWhr 3.6 1 860 3.41 x 103 2.66 x 106 85.7 x 10-6 

kcal 4.18 x 10-3 1.16 x 10-3 1 3.97 3.09 x 103 99.5 x 10-9 

Btu 1.06 x 10-3 0.293 x 10-3 0.252 1 0.778 x 103 25.2 x 10-9 

ft lbf 1.36 x 10-6 0.378 x 10-6 0.324 x 10-3 1.29 x 10-3 1 32.4 x 10-12 

toe 41.9 x 103 11.6 x 103 10 x 106 39.7 x 106 30.8 x 109 1 

MJ = megajoules; kWhr = kilowatt hour; kcal = kilocalorie; Btu = British thermal unit; ft lbf = foot-pound force; toe = tonnes oil 
equivalent. 

 

 
Conversion of units – power* 

                 To → kW (kJ/s) kcal/s hp ft lbf/s Btu/h 

From ↓ 
Multiply by 

kW (kJ/s) 1 4.18 1.34 735 4.47 x 104 

kcal/s 0.239 1 0.321 176 1.07 x 104 

hp 0.746 3.12 1 550 3.35 x 104 

ft lbf/s 1.36 x 10-3 5.68 x 10-3 1.82 x 10-3 1  

Btu/h 2.24 x 10-5 9.33 x 10-5 3.0 x 10-5  1 

  
kW = kilowatt; kcal/s = kilocalories per second; hp = horse power; ft lb/s = foot-pounds/second; Btu/h = British thermal 
units/hour 
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