Detection of mutations in CML patients resistant to tyrosine kinase inhibitor: imatinib mesylate therapy


Creative Commons License

KARASU N., Akalin H., GÖKÇE N., YILDIRIM A., DEMİR M., Kulak H., ...Daha Fazla

MEDICAL ONCOLOGY, cilt.38, sa.10, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 38 Sayı: 10
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s12032-021-01571-1
  • Dergi Adı: MEDICAL ONCOLOGY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, CINAHL, EMBASE, MEDLINE
  • Anahtar Kelimeler: CML, Fusion gene BCR, ABL, T315I, Imatinib resistance, NGS
  • Erciyes Üniversitesi Adresli: Evet

Özet

Imatinib mesylate, a tyrosine kinase inhibitor, is the first choice in chronic myeloid leukemia treatment. However, resistance to imatinib may develop with time and in some cases, patients may not respond at all to imatinib. Progressive resistance to imatinib therapy is often due to mutations in the BCR/ABL region. Within the scope of our study 124 patients were evaluated via pyrosequencing between 2015 and 2020. In this regard, 32 patients who have a partial response and have no response to imatinib therapy were included in the study. In addition, next-generation sequencing (NGS) analysis was performed on 15 patients who were resistant to imatinib treatment according to the molecular follow-up reports. With pyrosequencing, 5 cases out of a total of 124 were found to be positive. This means that approximately 4.03% of the proportion is positive. But when we examined only 32 patients who have a partial response and have no response to imatinib therapy this rate is rising 15.6%. NGS analysis was performed with 15 patients who have no mutation with pyrosequencing of 32 patients and VUS (Variant of Uncertain Significance) mutation was detected in one. In this study, our aim was to determine the mutations of the BCR/ABL and to evaluate the mutations by NGS and pyrosequencing. Our study is important in terms of comparing the pyrosequencing with NGS mutation rates, drawing attention to the clinical importance of log reduction.