Chronic alcohol-induced liver disease inhibits dendritic cell function


Creative Commons License

Feng D., Eken A., Ortiz V., Wands J. R.

LIVER INTERNATIONAL, cilt.31, sa.7, ss.950-963, 2011 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 7
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1111/j.1478-3231.2011.02514.x
  • Dergi Adı: LIVER INTERNATIONAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.950-963
  • Erciyes Üniversitesi Adresli: Hayır

Özet

Background/Aims: We have compared dendritic cell (DC) function derived from the alcoholic liver disease (ALD) sensitive Long-Evans (LE) and resistant Fischer rat strains to determine if the influence of ethanol on DCs was dependent on ALD. Methods: The LE and Fischer rats were fed an ethanol-containing or isocaloric control liquid diet for 8 weeks and comparisons were made to LE rats injected with thioacetamide as a liver disease control. DCs were isolated from the spleen after expansion with human Fms-like tyrosine kinase receptor 3 ligand plasmid. Maturation markers CD86, CD80, CD40 and MHC-II were analysed by flow cytometry with or without lipopolysaccharide and poly I:C stimulation. Production of tumour necrosis factor-alpha (TNF-alpha), interferon-gamma (IFN-gamma), interleukin (IL)-12p40 and IL-10 cytokines and the antigen presentation ability of DCs was determined. Results: Only LE rats developed ALD characterized by liver injury, elevated alanine aminotransferase levels and steatosis; CD86 and CD40 expression was decreased in LE but not Fischer rats. Reduced TNF-alpha, IFN-gamma, IL-12, proinflammatory and enhanced IL-10 cytokine production was found in DCs isolated from ethanol-fed LE but not Fischer rats. Allostimulatory activity was reduced in LE compared with the Fischer strain. In contrast, DCs isolated from thioacetamide-induced liver damage displayed a reduction only in IL-12p40; TNF-alpha, IL-10 and IFN-alpha production as well as antigen presenting ability remained intact compared with controls. Conclusions: ALD sensitive LE rats exhibited characteristics of a suppressed DC phenotype that was not observed following thioacetamide-induced liver disease, which suggests an important role for ALD in altering the host cellular and humoral immune responses.

BACKGROUND/AIMS:

We have compared dendritic cell (DC) function derived from the alcoholic liver disease (ALD) sensitive Long-Evans (LE) and resistant Fischer rat strains to determine if the influence of ethanol on DCs was dependent on ALD.

METHODS:

The LE and Fischer rats were fed an ethanol-containing or isocaloric control liquid diet for 8 weeks and comparisons were made to LE rats injected with thioacetamide as a liver disease control. DCs were isolated from the spleen after expansion with human Fms-like tyrosine kinase receptor 3 ligand plasmid. Maturation markers CD86, CD80, CD40 and MHC-II were analysed by flow cytometry with or without lipopolysaccharide and poly I:C stimulation. Production of tumour necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-12p40 and IL-10 cytokines and the antigen presentation ability of DCs was determined.

RESULTS:

Only LE rats developed ALD characterized by liver injury, elevated alanine aminotransferase levels and steatosis; CD86 and CD40 expression was decreased in LE but not Fischer rats. Reduced TNF-α, IFN-γ, IL-12, proinflammatory and enhanced IL-10 cytokine production was found in DCs isolated from ethanol-fed LE but not Fischer rats. Allostimulatory activity was reduced in LE compared with the Fischer strain. In contrast, DCs isolated from thioacetamide-induced liver damage displayed a reduction only in IL-12p40; TNF-α, IL-10 and IFN-α production as well as antigen presenting ability remained intact compared with controls.

CONCLUSIONS:

ALD sensitive LE rats exhibited characteristics of a suppressed DC phenotype that was not observed following thioacetamide-induced liver disease, which suggests an important role for ALD in altering the host cellular and humoral immune responses.