Segmentation of fetal brain tissues using 3D U-Net and the effect of gestational age on segmentation performance


Creative Commons License

Akyüz U., Özcan T.

Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, vol.12, no.3, pp.637-643, 2023 (Peer-Reviewed Journal)

Abstract

Gebelik esnasında fetüs beyninde, çevresel veya genetik etmenlerden kaynaklanan bozuklukların ilerleyen yaşlarda otizm, hiperaktivite ve bipolar bozukluklar olarak ortaya çıktığı düşünülmektedir. Fetüs beyin dokularının yapısal analizi, dokuların büyüklükleri ve şekilleri hakkında bilgi sağlayarak bu hastalıkların etiyolojisinin araştırılmasına yardımcı olmaktadır. MR (manyetik rezonans) ve ultrason fetüs beyin dokusu analizi için en sık kullanılan iki görüntüleme tekniğidir. Özellikle MR görüntülemede, fetüs beyin dokuları net bir şekilde görülebilmesine rağmen bu görüntülerin yapısal analizi zaman alıcı bir iştir. Hızla gelişen ve değişen fetüs beyin dokuları, haftalık veya aylık periyotlarla, elle veya yarı-otomatik şekilde gerçekleştirilen MR analizinin yapılmasını zorlaştırmaktadır. Bu araştırmada, 3B U-Net ile MR görüntüleri üzerinde yedi farklı fetüs beyin dokusunun tam otomatik segmentasyonu gerçekleştirilmiştir. FeTA2021 veri seti, erken, orta ve geç gestasyonel yaş gruplarına bölünerek her bir yaş grubu için farklı 3B U-Net modelleri eğitilmiş ve segmentasyon performansı analiz edilmiştir. Gestasyonel yaş gruplarına göre sırasıyla ortalama 0.83, 0.91 ve 0.92 Dice skoruna ulaşılmıştır.