Investigation and characterization of <i>Aliarcobacter</i> spp. isolated from cattle slaughterhouse in Türkiye


Disli H. B., HIZLISOY H., Gungor C., BAREL M., DIŞHAN A., Gundog D. A., ...More

INTERNATIONAL MICROBIOLOGY, vol.27, no.4, pp.1321-1332, 2024 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 27 Issue: 4
  • Publication Date: 2024
  • Doi Number: 10.1007/s10123-023-00478-3
  • Journal Name: INTERNATIONAL MICROBIOLOGY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, EMBASE, Environment Index, Food Science & Technology Abstracts, MEDLINE, Pollution Abstracts, Veterinary Science Database, DIALNET
  • Page Numbers: pp.1321-1332
  • Keywords: Aliarcobacter spp, Antimicrobial resistance, Slaughterhouse, Virulence gene
  • Erciyes University Affiliated: Yes

Abstract

Aliarcobacter spp. have been isolated from numerous food products at retail and from animal carcasses and feces at slaughter. The objectives of this study were as follows: (i) to isolate Aliarcobacter species from different slaughterhouses' samples and (ii) to detect genetic diversity, antibiotic resistance, biofilm ability, and putative virulence gene profiles of the isolates. A molecular investigation of antibiotic resistance and virulence factors was also conducted using polymerase chain reaction (PCR). Among 150 samples, a total of 22 (14.6%) Aliarcobacter spp. isolates were obtained, with varying levels of antibiotic resistance observed. The genes tetO, tetW, and gyrA were detected in 0%, 31.8%, and 27.2% of the isolates, respectively. All isolates were resistant to ampicillin, rifampin, and erythromycin, while tetracycline was found to be the most effective antibiotic, with 81.8% of the isolates showing susceptibility to it. All isolates (100%) harbored more than one of the nine putative virulence genes tested, with 18.1% of isolates carrying more than three. Regarding biofilm formation, 7 (31.8%) and 4 (18.1%) isolates were found to form strong and moderate biofilms, respectively, while one (4.5%) isolate was classified as a weak biofilm producer. ERIC-PCR band patterns suggested that the isolated Aliarcobacter spp. from slaughterhouses had different sources of contamination. These findings highlight the potential risk posed by pathogenic and multidrug-resistant Aliarcobacter spp. in food and the need for control measures throughout the food chain to prevent the spread of these strains. The results indicate that foods of animal origin and cattle slaughterhouses are significant sources of antimicrobial resistant Aliarcobacter.