Modification of surface properties of polypropylene films by blending with poly(ethylene-b-ethylene oxide) and its application


Oezen I., Rustal C., Dirnberger K., Fritz H., Eisenbach C. D.

POLYMER BULLETIN, cilt.68, sa.2, ss.575-595, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 68 Sayı: 2
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1007/s00289-011-0655-0
  • Dergi Adı: POLYMER BULLETIN
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.575-595
  • Erciyes Üniversitesi Adresli: Evet

Özet

The possibility of improving the interfacial adhesion between polypropylene (PP) and polyamide layers (PA) has been investigated by means of addition of commercially available amphiphilic poly(ethylene-b-ethylene oxide) (P(E-b-EO)) block copolymers. These block copolymers were added to the PP matrix polymer in a twin screw extruder as integral additive. The change in surface properties of PP films upon incorporating P(E-b-EO) was investigated in model studies of blends prepared by casting PP/P(E-b-EO) solutions in 1,2-dichlorobenzene onto glass and Teflon Petri dishes, by melt pressing of PP/P(E-b-EO) blends between Teflon foils and glass substrates, or by melt extrusion of PP/P(E-b-EO) mixtures. The surfaces of the blend films were analyzed by attenuated total reflection Fourier transform infrared spectroscopy and water contact angle measurements. It was shown that an enrichment of the block copolymer at the surface of the blend depends highly on the conditions of film preparation and is driven by reducing the interfacial energy between the blend and the contacting medium. Effects of shear rate and residence time during normal processing conditions were also revealed. Blown film experiments with PP/P(E-b-EO) blends and PA were carried out for evaluating the effect of the integral P(E-b-EO) additive on the interfacial adhesion.
The possibility of improving the interfacial adhesion between polypropylene (PP) and polyamide layers (PA) has been investigated by means of addition of commercially available amphiphilic poly(ethylene-b-ethylene oxide) (P(E-b-EO)) block copolymers. These block copolymers were added to the PP matrix polymer in a twin screw extruder as integral additive. The change in surface properties of PP films upon incorporating P(E-b-EO) was investigated in model studies of blends prepared by casting PP/P(E-b-EO) solutions in 1,2-dichlorobenzene onto glass and Teflon Petri dishes, by melt pressing of PP/P(E-b-EO) blends between Teflon foils and glass substrates, or by melt extrusion of PP/P(E-b-EO) mixtures. The surfaces of the blend films were analyzed by attenuated total reflection Fourier transform infrared spectroscopy and water contact angle measurements. It was shown that an enrichment of the block copolymer at the surface of the blend depends highly on the conditions of film preparation and is driven by reducing the interfacial energy between the blend and the contacting medium. Effects of shear rate and residence time during normal processing conditions were also revealed. Blown film experiments with PP/P(E-b-EO) blends and PA were carried out for evaluating the effect of the integral P(E-b-EO) additive on the interfacial adhesion.