Pharmacological Activities and Molecular Mechanisms of Sinapic Acid in Neurological Disorders


Farzan M., Abedi B., Bhia I., Madanipour A., Farzan M., Bhia M., ...Daha Fazla

ACS CHEMICAL NEUROSCIENCE, cilt.15, sa.16, ss.2966-2981, 2024 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Derleme
  • Cilt numarası: 15 Sayı: 16
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1021/acschemneuro.4c00349
  • Dergi Adı: ACS CHEMICAL NEUROSCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Chemical Abstracts Core, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.2966-2981
  • Anahtar Kelimeler: Alzheimer’s disease, herbal medicine, hydroxycinnamic acids, neurological disorder, Parkinson’s disease, Sinapic acid
  • Erciyes Üniversitesi Adresli: Evet

Özet

Sinapic acid (SA) is a phenylpropanoid derivative found in various natural sources that exhibits remarkable versatile properties, including antioxidant, anti-inflammatory, and metal-chelating capabilities, establishing itself as a promising candidate for the prevention and treatment of conditions affecting the central nervous system, such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, and other neurological disorders. These effects also include neuroprotection in epilepsy models, as evidenced by a reduction in seizure-like behavior, cell death in specific hippocampal regions, and lowered neuroinflammatory markers. In AD, SA treatment enhances memory, reverses cognitive deficits, and attenuates astrocyte activation. SA also has positive effects on cognition by improving memory and lowering oxidative stress. This is shown by lower levels of oxidative stress markers, higher levels of antioxidant enzyme activity, and better memory retention. Additionally, in ischemic stroke and PD models, SA provides microglial protection and exerts anti-inflammatory effects. This review emphasizes SA's multifaceted neuroprotective properties and its potential role in the prevention and treatment of various brain disorders. Despite the need for further research to fully understand its mechanisms of action and clinical applicability, SA stands out as a valuable bioactive compound in the ongoing quest to combat neurodegenerative diseases and enhance the quality of life for affected individuals.