New Avenues to Explore in SARS-CoV-2 Infection: Both TRIM25 and TRIM56 Positively Correlate with VEGF, GAS6, and sAXL in COVID-19 Patients

Baskol G., Ozel M., Saracoglu H., Ulger B., Kalin Unuvar G., Onuk S., ...More

VIRAL IMMUNOLOGY, vol.35, no.10, pp.690-699, 2022 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 35 Issue: 10
  • Publication Date: 2022
  • Doi Number: 10.1089/vim.2022.0112
  • Journal Name: VIRAL IMMUNOLOGY
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, BIOSIS, CAB Abstracts, Chemical Abstracts Core, EMBASE, MEDLINE, Veterinary Science Database
  • Page Numbers: pp.690-699
  • Keywords: GAS6, HIF-1 alpha, sAXL, TRIM25, TRIM56, VEGF
  • Erciyes University Affiliated: Yes


The ongoing COVID-19 pandemic poses a significant threat to human health. Many hypotheses regarding pathogenesis have been proposed and are being tried to be clarified by experimental and clinical studies. This study aimed to reveal the roles of the innate immune system modulator GAS6/sAXL pathway, endothelial dysfunction markers vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1 alpha, and antiviral effective TRIM25 and TRIM56 proteins in pathogenesis of COVID-19. The study included 55 patients with COVID-19 and 25 healthy individuals. The serum levels of GAS6, sAXL, VEGF, HIF-1 alpha, TRIM25, and TRIM56 were measured using commercial ELISA kits and differences between COVID-19 patients and healthy controls, and the relationship to severity and prognosis were evaluated. GAS6, sAXL, TRIM56, and VEGF were found to be higher, while TRIM25 was lower in patients. There were strong positive correlations between GAS6, sAXL, TRIM25, TRIM56, and VEGF. None of the research parameters other than HIF-1 alpha was associated with severity or prognosis. However, HIF-1 alpha was positively correlated with APACHE II. We speculate that the antiviral effective TRIM25 and TRIM56 proteins, as well as the GAS6/sAXL pathway, act together as a defense mechanism in COVID-19. We hope that our study will contribute to further studies to elucidate the molecular mechanism associated with TRIM56, TRIM25, GAS6, sAXL, and VEGF in COVID-19 patients.