Large Direct Repeats Flank Genomic Rearrangements between a New Clinical Isolate of Francisella tularensis subsp tularensis A1 and Schu S4


Creative Commons License

Nalbantoglu U., Sayood K., Dempsey M. P., Iwen P. C., Francesconi S. C., Barabote R. D., ...Daha Fazla

PLOS ONE, cilt.5, sa.2, 2010 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 5 Sayı: 2
  • Basım Tarihi: 2010
  • Doi Numarası: 10.1371/journal.pone.0009007
  • Dergi Adı: PLOS ONE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Erciyes Üniversitesi Adresli: Hayır

Özet

Francisella tularensis subspecies tularensis consists of two separate populations A1 and A2. This report describes the complete genome sequence of NE061598, an F. tularensis subspecies tularensis A1 isolated in 1998 from a human with clinical disease in Nebraska, United States of America. The genome sequence was compared to Schu S4, an F. tularensis subspecies tularensis A1a strain originally isolated in Ohio in 1941. It was determined that there were 25 nucleotide polymorphisms (22 SNPs and 3 indels) between Schu S4 and NE061598; two of these polymorphisms were in potential virulence loci. Pulsed-field gel electrophoresis analysis demonstrated that NE061598 was an A1a genotype. Other differences included repeat sequences (n = 11 separate loci), four of which were contained in coding sequences, and an inversion and rearrangement probably mediated by insertion sequences and the previously identified direct repeats I, II, and III. Five new variable-number tandem repeats were identified; three of these five were unique in NE061598 compared to Schu S4. Importantly, there was no gene loss or gain identified between NE061598 and Schu S4. Interpretation of these data suggests there is significant sequence conservation and chromosomal synteny within the A1 population. Further studies are needed to determine the biological properties driving the selective pressure that maintains the chromosomal structure of this monomorphic pathogen.