A Taguchi approach for optimization of design parameters in a tube with coiled wire inserts


GÜNEŞ S., Manay E., ŞENYİĞİT E., ÖZCEYHAN V.

APPLIED THERMAL ENGINEERING, vol.31, pp.2568-2577, 2011 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 31
  • Publication Date: 2011
  • Doi Number: 10.1016/j.applthermaleng.2011.04.022
  • Journal Name: APPLIED THERMAL ENGINEERING
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.2568-2577
  • Keywords: Coiled wire, Taguchi method, Heat transfer, Pressure drop, Optimization, HEAT-TRANSFER ENHANCEMENT, OPTIMUM WORKING-CONDITIONS, LINE QUALITY-CONTROL, PRESSURE-DROP, CIRCULAR TUBE, LAMINAR, PERFORMANCE, EXCHANGER, AUGMENTATION, WINGLETS
  • Erciyes University Affiliated: Yes

Abstract

This study presents the determination of the optimum values of the design parameters in a tube with equilateral triangular cross-sectioned coiled wire inserts. The effects of the design parameters such as the ratio of the distance between the coiled wire and test tube wall to tube diameter (s/D), pitch ratio (P/D), ratio of the side length of equilateral triangle to tube diameter (a/D) and Reynolds number (Re) on heat transfer and pressure drop were investigated by using Taguchi method. The Nusselt number and friction factor were considered as performance parameters. An L9(34) orthogonal array was chosen as experimental plan. The goal of this study is to reach maximum heat transfer (i.e. Nusselt number) and minimum pressure drop (i.e. friction factor). First of all, each goal was optimized, separately. Then, all the goals were optimized together, considering the priority of the goals. Contribution ratios for each parameter on the heat transfer and pressure drop were determined. Consequently, the optimum results were found to be s/D ¼ 0.0357, P/D ¼ 1, a/D ¼ 0.0714 and Re ¼ 19800.
This study presents the determination of the optimum values of the design parameters in a tube with equilateral triangular cross-sectioned coiled wire inserts. The effects of the design parameters such as the ratio of the distance between the coiled wire and test tube wall to tube diameter (s/D), pitch ratio (P/D), ratio of the side length of equilateral triangle to tube diameter (a/D) and Reynolds number (Re) on heat transfer and pressure drop were investigated by using Taguchi method. The Nusselt number and friction factor were considered as performance parameters. An L-9(3(4)) orthogonal array was chosen as experimental plan. The goal of this study is to reach maximum heat transfer (i.e. Nusselt number) and minimum pressure drop (i.e. friction factor). First of all, each goal was optimized, separately. Then, all the goals were optimized together, considering the priority of the goals. Contribution ratios for each parameter on the heat transfer and pressure drop were determined. Consequently, the optimum results were found to be s/D = 0.0357, P/D = 1, a/D = 0.0714 and Re = 19800. (C) 2011 Elsevier Ltd. All rights reserved.