N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid

J. Manafian *Et Al.* , "N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid," *MATHEMATICAL METHODS IN THE APPLIED SCIENCES* , vol.43, no.17, pp.9904-9927, 2020

Manafian, J. *Et Al.* 2020. N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid. *MATHEMATICAL METHODS IN THE APPLIED SCIENCES* , *vol.43, no.17* , 9904-9927.

Manafian, J., İLHAN, O. A. , Avazpour, L., & Alizadeh, A., (2020). N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid. *MATHEMATICAL METHODS IN THE APPLIED SCIENCES* , vol.43, no.17, 9904-9927.

Manafian, Jalil *Et Al.* "N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid," *MATHEMATICAL METHODS IN THE APPLIED SCIENCES* , vol.43, no.17, 9904-9927, 2020

Manafian, Jalil *Et Al.* "N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid." *MATHEMATICAL METHODS IN THE APPLIED SCIENCES* , vol.43, no.17, pp.9904-9927, 2020

Manafian, J. *Et Al.* (2020) . "N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid." *MATHEMATICAL METHODS IN THE APPLIED SCIENCES* , vol.43, no.17, pp.9904-9927.

@article{article, author={Jalil Manafian *Et Al.* }, title={N-lump and interaction solutions of localized waves to the (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation arise from a model for an incompressible fluid}, journal={MATHEMATICAL METHODS IN THE APPLIED SCIENCES}, year=2020, pages={9904-9927} }